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ABSTRACT1 

 
This paper presents a diagnostic and prognostic approach for rotorcraft bearing 

health monitoring using the Hilbert-Huang Transform (HHT). The HHT transforms 
a raw vibration data into in a two-dimensional time-frequency domain by extracting 
instantaneous frequency components within the signal through an empirical mode 
decomposition EMD process. EMD transforms the complex vibration signal into 
simple oscillatory modes called intrinsic mode functions (IMFs). Since the IMFs 
are obtained based on the local characteristic time scale of the data, they can be 
used to analyze the nonlinear and nonstationary bearing degradation processes. In 
performing diagnostic decisions, the work presented here uses the energy ratios of 
the highest two intrinsic modes and the respective marginal frequencies as 
condition indicative features. The approach has been tested using experimental data 
obtained from seeded spall and corrosion tests on AH-64 Apache hanger bearings.  
 
INTRODUCTION 
 

As a critical component in the rotorcraft system, effective health monitoring of 
bearings has attracted increasing attention from the research community. Early 
detection of bearing degradation allows the maintainer to plan corrective actions so 
as to minimize the impact to readiness, and in many cases to minimize collateral 
damage. Of the various bearing health monitoring techniques, such as oily debris 
analysis, acoustic emission, etc, vibration measurement remains to a reliable and 
cost effective technique [1,2].  

Traditional vibration-based diagnostics rely on frequency domain analysis such 
as the fast Fourier Transform (or FFT). In the frequency domain, the vibration 
amplitude at the characteristic defect frequencies, also known as bearing fault 
frequencies (BFFs), are used to make diagnostic inference about bearing conditions 
[2,3]. A condition monitor that relies only on BFFs, however, doesn't always 
perform well because: (i) in many cases, particularly at the early stage of failure, the 
raw vibration signal has a very low signal to noise ratio (SNR) resulting in the fault 
frequencies being buried under the noise floor, (ii) in the case of wide spread 
defects such as corrosion, the fault frequency do not generally occur at a single 
repeatable frequency and hence no clear BFF can be established.  

Bearing condition monitoring using linear and stationary signal processing 
techniques such as the ubiquitous Fourier transform or power spectrum analysis 
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have been widely implemented [1-3]. Stationary vibration is one in which its 
properties such as frequency content, energy distribution are time-invariant. 
Bearing damage progression, however, is a localized and transient event in which 
the frequency content of the signal evolves with time. The transient nature of the 
signal makes the underlying assumption of stationarity as required by the Fourier 
transform invalid. Hence nonstationary signal processing techniques are required. 

The earliest nonstationary signal processing technique was the short-time 
Fourier transform (STFT), which divides a time series x(t) into a series of small 
overlapping windowed pieces. The Fourier transforms of these small pieces is then 
assembled to obtain the time-frequency response of the signal as [4]: 
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here h(t) is a window function such as Hann window or Gaussian hill, ω is angular 
frequency. The STFT is most useful when the physical process is linear, so that the 
superposition of sinusoidal solution is valid and time is locally stationary or when 
the Fourier coefficients are varying slowly. The main limitation of the STFT is that 
it uses the same window size to analyze the entire time series. A constant window 
size that matches the specific frequency content of an evolving signal cannot be 
known a priori [6].  

Wavelet transform (WT) seeks to address the drawbacks of the STFT by 
implementing a windowing technique with variable sized regions. WT decomposes 
a time series into local time-dilated and time-translated wavelet components using 
time-frequency atoms or wavelets ψ as [7]: 
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where ψ(·) is the basic wavelet function, a is the scale and b is the time shift. 
Wavelet analysis is attractive because it has uniform temporal resolution for all 
frequency scales and as such it can characterize gradual changes in frequency. The 
limitation of WT, however, is that it uses the same wavelet function to analyze an 
entire data which unfortunately leads to a subjective assumption on the 
characteristic of the analyzed signal. As a consequence, only signal features that 
correlate well with the shape of the basic wavelet function have a chance to lead to 
coefficients of high value and all other features will be masked or completely 
ignored.  
 The FFT, STFT, and WT, techniques are based on linear and stationary 
assumption, linear and locally-stationary assumption, and linear and nonstationary 
assumption respectively. Unfortunately vibration data from a degrading bearing can 
only be accurately represented as a nonlinear and nonstationary process making 
these techniques invalid.  
 A recently developed method, known as the Hilbert-Huang transform (HHT) [9] 
establishes a viable signal processing approach to represent nonlinear and 
nonstationary vibration signals as presented in the next section. 



THE HILBERT-HUANG TRANSFORM (HHT) 
 

The HHT represents a vibration signal in time-frequency domain by combining 
the empirical mode decomposition (EMD) with the Hilbert transform (HT). The 
Hilbert transform (HT) is a convolution of a signal x(t) with a function   1/h t t  

and it consists of passing a signal through a system which leaves the magnitude 
unchanged, but changes the phase of all frequency components by π/2. The HT of a 
signal x(t) is given by [6,9]: 
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The analytic signal denoted z(t) is constructed by adding the original signal x(t) to 
its Hilbert transform y(t) as      z t x t jy t   and in polar coordinates 

      expz t a t j t . Where, 
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here a(t) and θ(t) are the instantaneous amplitude and the instantaneous phase 
angles of the analytic signal z(t). The instantaneous frequency is given by the time 
derivative of the phase angle θ(t) as [9,10]: 

            
   2 2

d t y t x t y t x t
t

dt x t y t





 



 
 (5) 

To ensure that the instantaneous frequency obtained from the derivative 
operations in (5) is physically meaningful, the instantaneous phase must be single 
valued function (or a mono-component signal). For multiple frequency component 
signals, such as the vibration signal from bearings, EMD has to be performed on the 
signal. The EMD technique iteratively decomposes a signal into a number of simple 
oscillatory modes called intrinsic mode functions (IMFs). To extract the IMF's from 
the vibration signal a sequential sifting process is conducted [9]. In the first step of 
EMD, one identifies all the local maxima and minima of the signal and then 
generates the upper and lower envelop functions. If the mean of the upper and 
lower envelops is m1(t), then the first IMF h1(t) is defined by: 

      1 1x t m t h t   (6) 

By definition h1(t) is an IMF if the following two conditions are satisfied [9]: (i) 
the number of extrema and the number of zero crossings are either equal or differ 
by at most one, (ii) at any point, the mean value between the envelop defined by the 
local minima is zero. If h1(t) does not satisfy the above two requirements, the sifting 
process is repeated sequentially for as many steps as it is needed to reduce the 
signal to an IMF. In the subsequent sifting step, h1(t) is treated as the original data, 
and then      1 11 11h t m t h t  , where m11(t) is the mean of the upper and lower 



envelops of h1(t). In general the sifting process is repeated up to k times. 
Throughout the iteration process the difference between the signal and the mean 
envelop values, h1k(t), is calculated by: 

        1 11 1 k kkh t m t h t    (7) 

where m1k(t) is the mean envelop value after the kth iteration, and h1(k-1)(t) is the 
difference between the signal and the mean envelop values at the (k-1)th iteration. 
The function h1k(t) is then defined as the first IMF component and denoted by: 

    1 1kc t h t  (8) 

After separating c1(t) from the original signal x(t), the residue is obtained as: 

      1 1r t x t c t   (9) 

Subsequently, the residue r1(t) is taken as if it were the original data and the above 
iteration process is repeated to extract the rest of the IMFs inherent in the signal x(t) 
as,            2 1 2 1, , n n nr t r t c t r t r t c t    . The sifting process is terminated 

when the residue rn(t) becomes a monotonic function from which no further IMFs 
can be extracted [9]. The original signal x(t) can be reconstructed from its IMFs as 
[6]: 
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Having obtained the IMFs using the EMD process, the Hilbert transform is applied 
to each IMF component as: 
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The analytic signal is defined as,      HTi i iz t c t j c t      and in polar 

coordinates      ij t
i iz t a t e  . The instantaneous amplitude and phase angles are 

calculated using equations (4) and (5) with ci(t) and H[ci(t)] replacing x(t) and y(t) 
respectively. The original vibration signal can be reconstructed by assembling the 
instantaneous frequencies and instantaneous amplitudes as: 
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The term rn(t) is not included in equation (12) as it is a monotonic function with no 
contribution to the frequency content of the signal. Equation (12) is designated as 
the Hilbert-Huang spectrum H(ω, t) and it allows three-dimensional visualization of 
the data in which amplitude is plotted as the height in the time-frequency plane.  
 
 
 



FEATURE EXTRACTION  
 

To perform diagnosis, one needs to select and extract features from the 
vibration signal that reveal the fault signatures and trend with fault severity. In the 
time domain, available features are root-mean-square (RMS), kurtosis, crest factor, 
impulse factor, shape factor, and clearance factor of the vibration signal [2]. Some 
of these features are good indicators for incipient localized or discrete damages 
such as spalling however, they are not effective in detecting wide spread failure 
such as corrosion. Even for spalling, when the defect becomes severe and spreads 
across the bearing surface, the vibration signal becomes more random and the 
statistical signature becomes buried again resulting in the drop to seemingly normal 
level of time domain features.  

In the work presented here two different features are extracted. The first feature 
is the maximum amplitude frequency of the intrinsic mode functions (IMFs) of the 
highest and the second highest mode functions. This feature is obtained by taking 
the fast Fourier transform (FFT) of the two top IMFs. The second feature is the 
energy ratio of the first two highest IMFs. To obtain the second feature, the signal 
energy of the IMFs is calculated and divided by the total energy of the signal. The 
linear projection of these two features known as principal component (PCA) is then 
used as condition indicative parameter. Experimental data from spalled and 
corroded AH-64 bearings is used to validate the HHT based analysis technique and 
the feature vectors extracted here.  

EXPERIMENTAL DATA 
 

In order to obtain vibration data well correlate to the damage severity levels of 
the test bearings, a seeded fault test is conducted on a series of nominally identical 
AH-64 hanger bearings [11]. The latter is a single row, double sealed grease packed 
ball bearing lubricated with grease that conforms to MIL specification. The test was 
run on a component level test rig consisting of variable speed electric motor 
adapted to test similar classes of bearings. Table 1 shows specimen specifications 
and the severity of the seeded fault introduced in the specimens. 

 
 

TABLE 1. BEARING TEST SPECIMENS 

Bearing 
Damage type 

Trench (width x depth) 
Damage 
Severity 

001BL Baseline Healthy 
001BLr* Baseline Healthy 
025LT 0.011" x 0.007" trench Light 
026MT 0.029" x 0.015" trench Moderate 
027ST 0.045" x 0.023" trench Severe 
019SC Corrosion Severe+ 
020SC Corrosion Severe+ 
021SC Corrosion Severe+ 
*Baseline repeat test. +By visual inspection. 

 
 
Vibration data is collected from accelerometer installed on the housing of the 

bearing. Two different types of faults are seeded in the bearings. First, three 



different sizes of semi-circular trenches are cut in the inner race of three bearings. 
Second, corrosion is introduced in another set of three bearing by forcing salt water 
in the grease and storing the bearings until the corrosion reaches certain level 
deemed severe by visual inspection. In all cases the same radial load is applied and 
the test shaft-speed is maintained identical. Vibration data is collected at sampling 
rate of 120 kHz for five seconds at 15min intervals. Detail experimental setup, test 
procedure and photos of the test rig and test samples are given on the work of 
Dykas et.al [11].  

Figure 1a (top) shows plots of the raw sensor data from a bearing with a severe 
trench (specimen 027ST) and a corroded bearing (specimen 021SC). The fast 
Fourier transforms showing the frequency spectrum of the two test bearings are 
shown in Figure 1b. Clearly, the very large seeded trench of 027ST has resulted in 
large signal to noise ratio as indicated by the easily identifiable periodic pulse on 
the raw time series. Moreover, the fundamental ball-pass fault frequencies are 
clearly shown on the spectrum plot of the data. The raw sensor data of the corroded 
bearing, however, shows a less identifiable pulse and the fault frequencies didn't 
occur at repeatable frequencies. Corrosion causes vibration to have a higher energy 
and there appears to be some spectral smearing in the frequency.  
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Figure 1. Raw vibration signals of spalled and corroded bearings: (a) Time, and (b) Frequency 

domains. 

ANALYSIS RESULTS 
 

The ability of the nonlinear and nonstationary Hilbert-Huang transform for 
diagnosing bearing defects was first studied on bearings with seeded trenches 
(specimens 025LT, 026MT, and 027ST). Shown in Figure 2 is a comparison of the 
extracted IMF's between signals from healthy Baseline and defective bearings. The 
corresponding HHT analyses are illustrated in Figure 3. For the defective bearing, 
the transient vibration caused by the defects are shown throughout the spectrum 
particularly in the frequency range of 1-3 kHz range. In addition these transients 
have shown a repetitive pattern that corresponds to the BPFO (ball passing outer) 
frequency of the bearing. The healthy bearing, in comparison showed no high 
frequency components or repetitive signal patterns since no defect is present.   

Figure 4 shows scatter plots of the condition indicative features for both the 
spalled and corroded bearings. As can be seen, the level means of the spalled 
bearing is clearly separable from each other based on the severity of the damage. 

(a) (b) 



The feature also separates the corroded bearings from the baselines. Though there 
seems to be a higher overlap between the three corroded specimens. This is 
expected as the same amount of saltwater has resulted in similar level of corrosion 
in all the three bearings. 
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Figure 2.  Intrinsic mode functions IMF1 through IMF4: (a) Healthy (b) Defective bearings. 

 

Figure 3. Hilbert-Huang Transfroms: (a) Healthy (b) Defective bearings. 
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Figure 4. Scatter plots of condition indicative feature: (a) Spalled (b) Corroded bearings. 
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CONCLUSIONS 
 

This paper presented a diagnostic and prognostic approach for rotorcraft bearing 
health monitoring using the Hilbert-Huang Transform (HHT). The HHT represents 
the raw vibration signal in a two-dimensional time-frequency domain by extracting 
the instantaneous frequency components from the signal using an empirical mode 
decomposition EMD process. EMD decomposes the complex vibration signal into 
simple oscillatory modes called intrinsic mode functions (IMF). Since the IMFs are 
obtained based on the local characteristics time scale of the data, they are applicable 
for the analysis of nonlinear and nonstationary bearing degradation process.  

To perform diagnostics, the authors used the energy ratios of the highest two 
intrinsic modes and the maximum amplitudes of the respective marginal 
frequencies as condition indicative features. Although the data set used is small and 
from component-level test rig, the EMD features have shown to efficiently classify 
spall and corrosion damages based on severity levels. Accordingly, these features 
have a potential to reliably diagnose both discrete (spall) and wide spread 
(corrosion) faults. Work is still in progress to further analyze the reliability of the 
approach using additional test data. 
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